Published on November 17, 2016 by Microsoft Research

Matrix completion is a basic machine learning problem that has wide applications, especially in collaborative filtering and recommender systems. Simple non-convex optimization algorithms are popular and effective in practice. Despite recent progress in proving various non-convex algorithms converge from a good initial point, it remains unclear why random or arbitrary initialization suffices in practice. We prove that the commonly used non-convex objective function for matrix completion has no spurious local minima — all local minima must also be global. Therefore, many popular optimization algorithms such as (stochastic) gradient descent can provably solve positive semi-definite matrix completion with arbitrary initialization in polynomial time. The result can be generalized to the setting when the observed entries contain noise. We believe that our main proof strategy can be useful for understanding geometric properties of other statistical problems involving partial or noisy observations.

See more on this video at www.microsoft.com/en-us/research/video/matrix-completion-no-spurious-local-minimum/

Leave a Reply

Be the First to Comment!

Notify of
avatar

wpDiscuz